

RainGain International workshop "Fine scale rainfall estimation"

April 16, 2012 - Leuven

ir. Laurens Cas Decloedt PhD researcher KU Leuven

Overview

- Topic 1: X-band and C-band radar calibration: methods and experiences
- Topic 2: X-band versus C-band performance: experiences
- Topic 3: Integration of X-band, C-band and rain gauge measurements: methods and experiences

• Topic 4: Fine-scale rainfall estimation: recommendations and guidelines

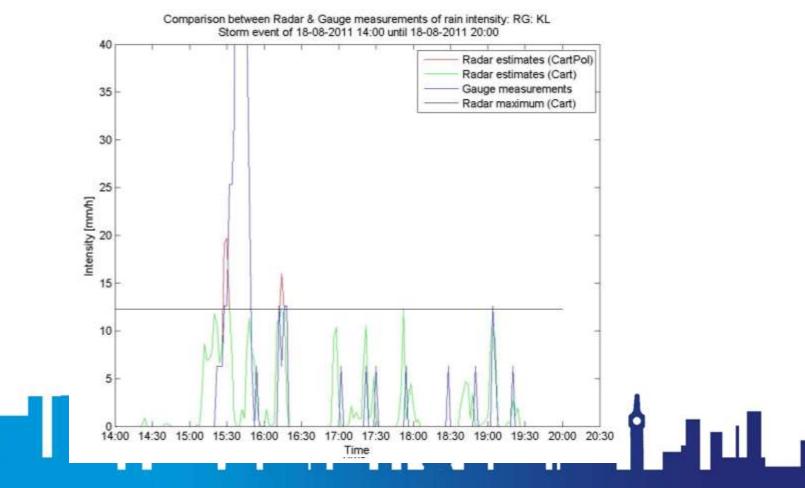
Topic 1: X-band and C-band radar calibration: methods and experiences

T1: X-band Radar calibration

- Built in calibration by DHI
- Attenuation correction, Volume correction, Noise cut-off and clutter removal (parameters are adjustable)
- Original data are not stored → comparison to find best parameters is very difficult

Topic 2: X-band versus C-band performance: experiences

T2: X-band versus C-band performance


- Magnetron of X-band: decay & replacement
- Performance of X-band: Comparison with TBR for rainfall intensities and sewer simulations (compared to measurements)
 → reasonable results
- Peak values topped off by X-band radar (difficulties observing high peak values)
- TBR outperforms radar for sewer modeling

T2: X-band versus C-band performance

• Performance of X-band: Comparison with TBR

T2: X-band versus C-band performance

- Comparison C- and X-band:
 X-band radar performs better than C-band radar
- C band (Wideumont) located at about 120km from the catchment

Statistical	Summer period/weeks		Winter period/weeks		
indicators	LAWR	RMI	LAWR	RMI	
RMSE [mm]	3.09	4.91	3.40	3.76	Source: N. Shrestha 2012 Journal of Hydroinformatics
MAE [mm]	2.06	3.02	2.42	4.38	
NSE [-]	0.70	0.48	0.55	0.66	

Laurens Cas Decloedt – KU Leuven

Topic 3: Integration of X-band, C-band and rain gauge measurements: methods and experiences

T3: Radar and rain gauge integration

- Point integration, radar adjusted to rain gauge
- Mean field bias correction (gives good results, but works for historical data only)
- Range dependant calibration
 (different regression functions tested, best: power law)
- Brandes spatial adjustment (gives good results within TBR network, but not outside network)
- Power law calibration (2 parameters) (Parameters range dependant: best results with lin-exp combination)

 Dynamic calibration factor (cfr MFB in realtime) (doesn't give the expected good results)

T3: Radar and rain gauge integration

- Power law calibration performs best
- Extra parameters influencing the radar-rain gauge relation currently investigated, will be used in the adjustments in the near future

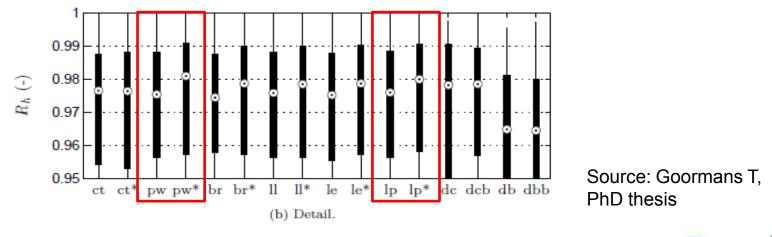
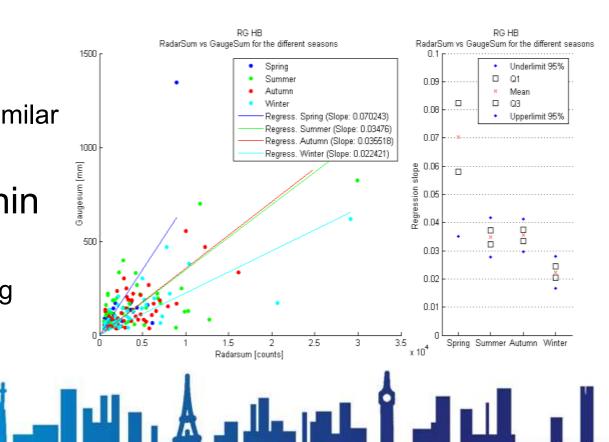


Figure 5.38: Comparison of the cross-correlation of water depth R_h for radar rainfall input only. '*' means MFB corrected.

Radar calibration activities

- Extra parameters influencing the radar-rain gauge relationship investigated:
 - Seasonal variance
 - Convective or stratiform nature
 - Mean rainfall intensity

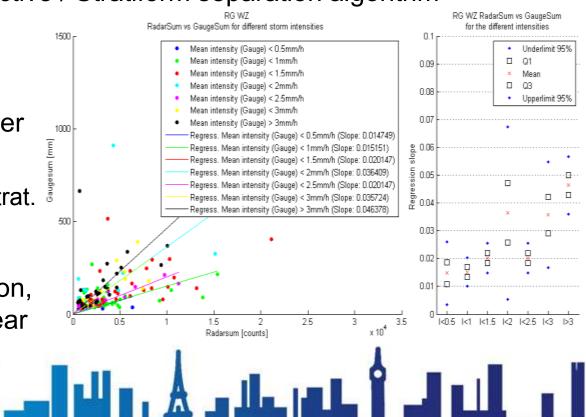
- Wind speed & direction
- Temperature
- Size of precipitating system
- Extra algorithms implemented and adapted to obtain extra parameters
 - Convective stratiform separation algorithm (Steiner et al. 1995)
 - Cloud movement and direction algorithm
- Significant correlations for some parameters



Influential parameters

- Season:
 - Spring higher, summer and autumn similar and winter lower
 - Supports Convective / Stratiform separation algorithm
- Direction:
 - Nearly no East
 - West & North similar
 - South higher
- Velocities within direction:
 - West: increasing relation found

Influential parameters



- Area:
 - No increasing relation, however, for relative radar filling levels within 40-50%, a higher relation is eminent
 - Supports Convective / Stratiform separation algorithm

1500

1000

- **Temperature:**
 - T <10° lower,
 - 10°< T<20° higher
 - T > 20° mean
 - Supports Conv./Strat.
- Intensities:
 - Increasing relation, but not super clear

Laurens Cas Decloedt – KU Leuven

Topic 4: Fine-scale rainfall estimation: recommendations and guidelines

Conclusion

T4: Fine-scale rainfall estimation

Laurens Cas Decloedt – KU Leuven

