

RainGain Workshop, KU Leuven, 16-17th April 2012

Impact of small scale rainfall variability in urban areas : a case study with 2D/1D hydrological models in a multifractal framework

<u>A. Gires</u>, A. Giangola-Murzyn, I. Tchiguirinskaia, D. Schertzer, S. Lovejoy

auguste.gires@leesu.enpc.fr

The Multi-Hydro model

Overall description:

- Multi-hydro is a numerical platform developed at LEESU (v1, El Tabach et al, 2008, v2, A. Giangola-Murzyn et al., 2012) in the framework of SMARTesT. It is currently in a validation and demonstration (Heywood site, Manchester; Villecresnes site, Val-de-Marne) phase.

- It a is core that makes interact different modules, each representing a portion of the water cycle in urban hydrology.

Main goals:

- taking into account small scales \rightarrow fully distributed model
- physically based model (no calibration)

- easily transportable \rightarrow a conversion module to generate inputs from available GIS data

- open access software packages to benefit from the feedback of a large community and frequent update.

The Multi-Hydro model

Urban area physical processes modeled in Multi-Hydro

Kodak catchment

- 1.47 km²
- Known for regular overflow
- Project to build a storm water storage basin

Total rainfall depth

Methodology : stochastic ensemble approach

(i) Generation of an ensemble of realistic downscaled rainfall fields :

- Multifractal analysis of rainfall data
- Downscaling with the help of discrete universal multifractals cascades

(ii) Simulation of the corresponding ensembles of hydrographs :

- Use of operational hydrological/hydraulic urban models

(iii) Analysis of the ensembles :

Variability among the 100 samples

Uncertainty due to the unknown high resolution rainfall variability

Quantifying the uncertainty associated with small scale rainfall variability

Rainfall downscaling technique

Measured or deterministically nowcasted

Multifractal analysis \rightarrow two relevant parameters of the cascade process

Stochastic spatio-temporal downscaling for each pixel

Performed with the help of discrete Universal Multifractal cascades

Quantifying the uncertainty associated with small scale rainfall variability

Rainfall downscaling technique

Total rainfall amount :

- Raw radar : 15.2 mm

- Simulated ensemble : 15.2 ± 0.12 mm (CV=0.8%)

> Potential hydrological effects are due to disparities of spatiotemporal distribution, not total amount.

Quantifying the uncertainty associated with small scale rainfall variability

Uncertainty on the simulated flow for the outlet

Multi-Hydro 10m

Semi-distributed 1D model

Quantifying the uncertainty associated with small scale rainfall variability Focus on the peak flow

Raj

Conclusion

Quantifying the uncertainty associated with unmeasured small scale rainfall variability :

- It cannot be neglected (CV reaches 30% for up-stream links and 7.5% for the outlet, and power law fall-off for probability distribution for both discharge and rainfall).

- A need to implement X band-radars (which provide an hectometric resolution) in urban area

Comparison of fully a distributed model (10 m resolution) with semi-distributed one (300 m resolution)

- Much more uncertainty is unveiled with the fully distributed / Even moderate rainfalls are affected

\rightarrow Small scale phenomenon must be taken into account in urban hydrology

Limits / further investigations :

- Perform similar study with other inputs
- More heaviest rainfall, actually generating floods should be tested

#