Impact of rainfall and model resolution on sewer hydrodynamics

G. Bruni^a, J.A.E. ten Veldhuis^a, F.H.L.R. Clemens^a, ^b

 ^a Water management Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN, Delft, NL
^b Deltares, P.O. Box 177, 2600 MD Delft, The Netherlands

> 7th International Conference on Sewer Processes & Networks Wed 28 - Fri 30 August 2013 The Edge Conference Centre, Sheffield

-

Casestudy Eindoven area: Riool Zuid -> "Southern sewer system"

- it serves 9 municipalities (~3'000 to ~43'000 inhabitants)
- 18.6 km long free-flow conduit
- Sewer system detail: from~ 500 nodes to 3'800 nodes .

Dataset-Rainfall

Ground measurements: 2 rain gauges Bergeijk and Vessem

C-band radar data, KNMI

Dataset- model specification

- Software package: Infoworks CS
- Runoff estimation model: Fixed RC (impervious areas) and Horton for infiltration losses (pervious areas)
- Runoff concentration: single linear resevoir (Desbordes)
- Sewer flow routing: dynamic wave approximation of the Saint-Venant equations

Methodology

TUDelft

Simulated scenarios

1. RAD-D: distributed sewer model with radar rainfall in input

2. RG-D: distributed sewer model with rain gauge rainfall in input

3. RAD-L: lumped sewer model with radar rainfall in input

4. RG-L: lumped sewer model with rain gauge rainfall in input

Rainfall selection-Event 1

Date	Duration	Total volume range (mm)		Maximum intensity range (mm/h)		
(dd-mm)	(h)	RG	RAD	RG	RAD	
12-7	2.50	9.9-2.8	9.2-0.7	37.2-12	28.6-1.5	

Storm evolution at Bergeijk and Vessem rain gauges vs overlapping radar pixels

Radar storm accumulation and maximum intensity

Results-1 Water level results at Bergeijk

Results-2 Water level results at Westehoven-Event 2

Valkenswaard- Event 3

Results 3- differences along the main conduit

TUDelft

Conclusions

- The impact of model structure on water levels is higher at locations close to rain gauges, i.e. when the rain gauge does accurately describe the storm evolution;
- The effect of rainfall resolution on model results becomes significant at locations far from the ground measurements: rain gauge fails to describe rainfall structure;
- The difference found in all six scenario pairs increases in the downstream direction, since the rain gauge is not representative of rainfall occurred at large distance (> 4 km), and the lumping of larger catchments introduces higher error.

Main characteristics of Riool Zuid sewer system:

	Type of connection	Runoff	Average	Donalation
	to Riool Zuid	area	slope	Population
	(mm)	(ha)	(m/m)	-
Luijksgestel	Gravity	39.4	0.0020	2936
Bergeijk	Gravity	173.8	0.0010	10749
Westerhoven	Pump	29.5	0.0030	2045
Riethoven	Pump	24.7	0.0030	2346
Valkenswaard	Gravity	392.5	0.0003	34430
Waalre	Pump	105.0	0.0030	6118
Veldhoven	Pump	422.0	0.0003	43158
Eindhoven	Pump	180.5	0.0010	10087
Aalst	Orifice	212.0	0.0040	11150

Brandes spatial adjustment (BRA)*

This spatial method was proposed by Brandes (1975). A correction factor is calculated at each rain gauge site. All the factors are then interpolated on the whole radar field. This method follows the Barnes objective analysis scheme based on a negative exponential weighting to produce the calibration field:

$$C_{\text{BRA}} = \frac{\sum_{i=1}^{N} w_i (G_i / R_i)}{\sum_{i=1}^{N} w_i} \quad w_i = \exp \frac{-d_i^2}{k}$$

where di is the distance between the grid point and the gauge i. The parameter k controls the degree of smoothing in the Brandes method. It is assumed constant over the whole domain.

The parameter k is computed as a function of the mean density of the network, given by the number of gauges divided by the total area. A simple inverse relation has been chosen:

 $k = (2\delta)^{-1}$

The factor 2 was adjusted to get an optimal k for the full network.

The optimal k was estimated by trial and error based on the verification for the year 2006. The same relation between k and is used for the reduced networks.

*J.W. Wilson and E.A.Brandes, 1975 E. Goudenhoofdt and L. Delobbe, 2009

