

X- and C-band radars: experiences in the Netherlands

Hidde Leijnse

X- and C-band: important differences

	X-band	C-band
Price	+	-
Ease of installation	+	-
Clutter	+	-
Attenuation	-	+
Usable range	-	+

Note that the resolution of X-band radars is not higher by definition!

- C-band radars are often used for country-wide rainfall information
 - 1500-m pseudoCAPPI composite is the standard product
 - Volume data could also be used

X- and C-band: important differences

Topic 1: calibration

There are several possibilities for monitoring calibration of radars (this goes for X- and C-band radars alike):

- Measuring solar power
- Analyzing returns from stable clutter targets
- Measuring transmitted power in wave guide
- Comparison of reflectivity in a given volume from different radars (statistics of differences)
- For dual-pol radars: consistency of polarimetric moments

North

van de Beek et al., HESS, 2010

Data from the SOLIDAR X-band radar (predecessor of IDRA) from 1993-1994 (195 events), with a 30-m and 16-s resolution

The Hague

Delft

Rotterdam

Data from operational C-band radar in De Bilt

- Data very close to the radar
- Used radar elevation scan 3 (0.8 deg., 1.0 km range res.) second range bin.
- Used standard Z-R relation (Z=200R^{1.6}).
- Severe underestimation by radar

van de Beek et al., QJRMS, 2012, in prep.

- Corrections applied for:
 - Calibration
 - Clutter
 - Wet radome attenuation
 - Non-standard Z-R relation
- Corrections can be seen to work well

van de Beek et al., QJRMS, 2012, in prep.

Comparison of radar QPE for three radars and two in-situ instruments at the Cabauw Experimental Site for Atmospheric Research (CESAR)

- Operational C-band radar
- X-band radar IDRA
- Vertically-pointing 35-GHz cloud radar
- Rain gauge
- 2-dimensional video disdrometer (2DVD)

Comparison of X- and C-band radars

- Simulated C-band radar signal from Xband radar data
- Compare results using Z-R relation before or after averaging
- Compare results with true C-band radar data

Topic 3: integration of data sources

In the Netherlands: only experience with integration of radar and rain gauge data

- Mean field bias (hourly rain gauge data from 32 gauges)
- Spatial correction field (daily rain gauge data from 325 gauges)

Topic 3: integration of data sources

- a) De Bilt pCAPPI
- b) Occultation
 - corrected pCAPPI
- c) Rain gauges
- d) Raw composite
- e) Bias-corrected composite
- f) Spatially-corrected composite

Overeem et al., JAMC, 2009

Topic 3: integration of data sources

Other data source: microwave links from commercial cellular communication networks

July 7 2009 8 UTC - July 8 2009 8 UTC

Overeem et al., BAMS, 2012, in prep.

Topic 4: fine-scale

Consistency of spatial and temporal resolution

Topic 4: fine-scale

- Question: what resolution is really needed?
 - Space
 - Time
- Question: given a certain resolution (in space and time), what is the desired accuracy?