

RainGain Partners meeting

October 25-26, 2012 - Rotterdam

ir. Laurens Cas Decloedt PhD researcher KU Leuven

Overview

- Topic 1: Literature review document
- Topic 2: Dynamic calibration of TBR's

Review document

- Literature review document on: 'Radar based fine scale rainfall estimation'
- Outcome of International workshop on fine scale rainfall estimation (Leuven)
- Will be distributed among partners & other interested researchers shortly

Laurens Cas Decloedt –

KU Leuven

Review document

Focus of review document:

- Bridge the gap between the expertise fields of radar meteorology and urban hydrology, drainage and flood management and control
- Comprises the entire radar based rainfall estimation processing chain
- Give an overview of the methods applied in both research and practice
- Not: reproduce existing knowledge (summarize)

Review document

- Radar technology:
 - Introduction to radar technology Explanation on the differences in the types of weather radars
- Radar measurements:
 - II. Calibration of the radar
 - III. Corrections to the raw radar signal
 - IV. Influence of the scanning strategy on the rainfall estimates
- Rainfall estimation:
 - V. Conversion from radar measurements to rainfall
 - VI. Ground truthing and adjustments to the estimates
 - VII. Merging all data sources for fine scale rainfall estimation

Overview

- Topic 1: Review document
- Topic 2: Dynamic calibration of TBR's

- At high rainfall intensities TBR's have a known problem (underestimation) due to the water loss during the tip
 → This can be corrected with dynamic calibration
- Simulate a precipitation event with a known volume and calculate the volume offset y with the rain gauge
- Do this for a range of rainfall intensities

Measured Volume: $V_{TBR} = R \cdot n \cdot \frac{\pi \cdot D_{TBR}^2}{4} [mm^3]$ Volume offset: $y = \frac{V_{TBR} - V_{Sim}}{V_{TBR}} [\%]$

Laurens Cas Decloedt – KU Leuven

8

Calibration of TBR's

Correct rainfall estimates from TBR's with known volume underestimation:

Regression curve: y = K. $i_{TBR} + b$ [%]

Correction curve:
$$i_{Real} = (1 - y/100)$$
. i_{TBR} [mm/h]
= $(1 - \frac{b}{100})$. $i_{TBR} - \frac{K}{100}$. i_{TBR}^2

The procedure also checks the quality of the measurements at low rainfall intensities (both under- and overestimations occur)

Thank you for your attention

Questions, remarks, suggestions?

ir. Laurens Cas Decloedt PhD researcher KU Leuven

