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Predictability

* What can we predict?

* What are the intrinsic predictability limits?
' Necessary to clarify what are they
respectively for systems
— complex only 1n time (ODE)
— complex both 1n space and time (PDE)

] | ° How to reach these predictability limits? (*)

—— * (*) how to be “operational” without 1t?

—PARIS-EEST \



Lessons from complexity in time?

— brought a wealth of striking results for (finite)
nonlinear (ordinary) differential systems:

xn=-Lx-Fx, 1)
dt

in a d-dimensional embedding space E,

— or (simpler) 1teration maps:

X,a=G0X,)

- n+l
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The Buttertly Effect
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Lorenz model: x-z projection of the evolution 100,000 points initially uniformly
distributed (0=.027) in the neighborhood of (6.27,13.9,19.5) that quickly spreads over

the strange attractor.



% Lessons from complexity in time?

— Multiplicative Ergodic Theorem (M.E.T.)
Lyapunov, 1907; Oseledets, 1968

0X (1) = "0 X(0)

— with the (finite) Lyapunov exponent:

U =< L0g+( D, F ) >

Hints: pair separation is multiplicatively modulated by the
—— derivative
+ existence of ancexrgodiemeasure that defines <> averages\

— PARIS- 1251



Lyapunov exponent of Lorenz model

M(t)=jdt L0g+( D F)

1 ~2.33341
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% Lessons from complexity in time?

ParisTech — Liouville equation (LE) for intermediate times

(Liouville, 1938) for any well-posed finite d-dimensional
differential system, an ergodic measure exists and 1s
regular w.r.t. the Lebesque measure dX, dX, dX,

—p(X 1)+ 2 ax [Xi0pEon] =0

“ gl — 1.e. a continuity equation of the density of the ergodic
measure 1n the phase space

- PARIS- 1251
15/08/03 Complexity 2007, Cambridge \



Buttertly effect and EPS

ParisTech

Initial Short-range Medium-range Loss of
(linear) (non-linear) predictability
(a (b (c) (d)

Scheme of the evolution of the empirical pdf evolution of an Ensemble
Prediction System (EPS), according to Palmer,1999: from the phase
space region occupied by the initial ensemble (a), to (b) linear growth phase,
to (¢) nonlinear growth phase, to (d) loss of predictability (Palmer, 1993)




A million dollar problem with trillion-dollar
implications!

Is the butterfly effect really true?

The Economics of

Climate Change

The Stern Review

" ey

NICHOLAS STERN

Board of Directors and Scientific Advisory Board
Landon T. Clay, Lavinia D. Clay, Finn M.W. Caspersen,
Alain Connes, Edward Witten, Andrew Wiles, Arthur Jaffe
(not present: Randolph R. Hearst III and David R. Stone)




Spectral analysis and closures

( =1/k =t""

Lorenz (1969)
Leith and Kraichnan(1972),
Metais and Lesieur (1986)

&n =]

Flux from correlated ec ec(lat) = U (&,t)-ﬁl (lat)
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Similar results with turbulence phenomenology:
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Turbulence phenomenology

The eddy turn-over time is the characteristic time, 1f 1t exists,
for structures of scale g

to "turn over" within a velocity shear 5u(€ ) - t=L]/ 514(6 )

It 1s also the proportional to their time-life (Robinson, 1971) therefore
the rate of energy transfer to smaller scales 1s:

e(0) =ou”(0)/T(0) =Su’(0) /¢

Assuming scale invariance of the energy tlux (K41): 8(6 ) =~ &

u(l)ocl/ ;(Z ) 51/36‘2/ 3 Small scale divergence !

—_— 1/ 2 . .
l 3/2 uncertainties grow up to larger scales
( (t)xe t TS STOW A 0 TS
according to a power-law!



How to generalize turbulent

& phenomenology?

ParisTech

e How to include: Hierarchy of space-time

— intermittency, : structures
e strongly non gaussian statistics,

— scaling anisotropies:
e Time vs. space:

e Vertical vs. horizontal:

— atmosphere is neither 3D, nor
2D, but rather 23/9D ?

e Use (anisotropic) time-
space cascades :

— Qutcome: multifractals 1n
the framework of GSI




Pedagogy: multiplicative cascades

'CASCADE

ﬂ’\i
« Richardson poem: LEVELS 4 €
Big whorls have little whorls... l/ | y
 discrete multiplicative cascade 0 -- — /’lO
Processes (Yaglom 1966, Mandelbrot 1974...) @
« from dead/alive alternative (8- multiplication by 4
model) * = independent random
» to weak/strong infinite hierarchy of /%éT =1, JIWEN (multiplicative)

 supported by an infinite hierarchy of

intensities . ‘ d - increments
&
E

fractals, @
* i.e. these fields are in general 4= :,1 )2
MULTIFRACTAL =hz °
7. B A SR .
» DISCRETE CASCADES are mostly | = / gglet;l;gﬁiggll}az{hl)ﬁl
| :
for PEDAGOGY ! : < (multiplicative)
* multiplicative processes are increments

not indispensable !

* NO causality ! n--

(S &L, 1987)



From discrete to continuous and universal cascades

Hint: multiplicative process=exponential of an additive process,
but with a small scale singular limit !

T Sub-generator YO,}\ white-noise
= N (UM: Lévy-noise, index a, f=-1)
} Generator T,
, e (Loghdivergence) ~(-0) () =v,, B=D, /2,
N l/a+1/a'=1
dey = exdyx
d\ C
dyy — dl'y = var()(\)z) > var(a) = - _1 .

—(—A)ﬁ'(px) =&,
B= (D, -H)/2

U.M.= stable fixed points
of a multiplicative CLT



Forecasts and past memory

The infinitely many
admissible FUTURE

trajectories/\/4 :
|

Past
with uncertainties

O

(t<t,) (t>to)




Multifractal Predictability

Crude 1dea:
i Tacth relaxation of (common) past structures ==> flux of the past
(new) independent structures ==> flux of the future
L
Cascade A g Cascade B
P—" A and B strongly dependent®™ "%
L/N(t)

A and B str«

L/A J



Multifractal predictability

A\

Ecole des Ponts
Rain simulation (a=1.5, C,=0.2, H=0.1 on log scale. Realizations A, B are identical until t=0, then they diverge.

Top: Realization A. Middle: Realization B. Bottom, forecast

{18 TR TR AY AN NNAN
L1 IR I T
{6 R TR DR A

X
‘Power laW dlvergence between the realizations A and B,
=> irrelevance of the finite dimensional ‘LE + MET”’ scenario !
*Drastic loss of variability of forecast C with deterministic sub-grid
modeling (based on the conservation of the flux) => ‘baby theorem’:
stochastic sub-grid modeling does much better than deterministic one!

— PARIS-EST

AURSAV R “
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(Schertzer and Lovejoy,Physica A 2004)\



Forecasts based on radar data

Observed

Realiz. A

Realiz. B

Realiz. C

t=tg+2At t=tp+3At

Complexity 2007, Cambridge



Power law decay of the common scale ratio

Empirical value
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Power law decay

of the scale ratio
A(t) on which A and
B are strongly
dependent



STEPS
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%0 STEP is a BOM operational product
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%0 based on a simplification of multifractal
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Figure 8 Field of radar reflectivity. The field is from Melbourne, Australia, and
is a 256 x 256 km image with 1 km resolution.

(Seed, 2009)

Figure 9 The first three spectral components of the field in Figure 8



Figure 10 Analysed rainfall, 30- and 60-minute deterministic forecasts of rainfall
for the Sydney area for 12:15 12 May 2003

f”

_-_J!

Figure 11 An ensemble of three 1-hour stochastic nowcasts of rainfall over
Sydney. (Seed, 2009)



Small scale variability

ParisTech
Stochastic ensemble (1000 realisations) of multifractal downscaling

observed(red), median(black), 10 and 90% quantile (blue)

0.90

1.35 7

035

0.30

N
(&)

025

L AL LLEES =
N
o

-l
(&)

——— 1000 downscaling realisations: 1km -> 125 m —— Qragar (1 km)
— 1000 downscaling realisations: 8 km -> 125 m ---- Qg et Qy (125 m)

(Gires, eta |., 2010) \



& Small scale variability

ParisTech

Stochastic ensemble (1000 realisations) of multifractal downscaling

(b)
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Estimates of peakflow
quantile increases due to
small scale variability of
the rainfall of in a sewer
system in Paris region

Gires, eta |., 2011) \



Surtace layer complexity!
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Art piece ‘Windswept’ (Ch. Sowers, 2012): 612 freely i v :t::\\ §§ | g ;‘ Y
rotating wind direction indicators to help a large public e .; - N e e e

to understand the complexity of environment near the

Earth surface Multifractal FIF simulation (S et al., 2013) of a 2D+1 cut of wind

and its vorticity (color). This stochastic model has only a few
parameters that are physically meaningful.

Both movies illustrate the challenge of the near surface wind that plays a key role in the
heterogeneity of the precipitations... and wind energy!

24



8 Conclusions
e Multifractal/cascade processes

ParisToch — not only help to clarity the predictability of space-time
— complex systems,
— but yield concrete methods to dynamically forecast within
this predictability limit by:
e exploiting the past memory
* yielding admissible futures
— already generated an operational product (STEPS)

|* still interesting/complex problems, e.g.:

* how to accurately estimate the past generator
from real data (deconvolution)

— therefore from ‘1mperfect’ data
e what about wind field (added value)?

* Fokker-Planck equation for MF processes?
e Funding: UE Alban Program, UE FLOODSITE, CNRS/PNRH, RainGain




Forecasts and past memory

Subgénérateur (bruit blanc de Lévy)

5B How to use
the memory of
the PAST

How to compute
a possible FUTURE
outcome

i

lllustration of
a continuous
cascade simulation

Générateur

lllustration of
the ‘deconvolution’

from the | of past data to extract
subgenerator (white the past generator from
noise) the observed field

to the field

(fractionnaly
Integrated Flux)

FORECAST: Combine the two generators to get the total flux and the totaifield



Examples of forecasts

Realisations A,B,C (2522)
have common past
(t=0, t,=32) fort=0, 64 :

A B are 2 stochastic forecasts:
similar complexity

C is a deterministic forecast :
relaxation of the past structures,
the small scale complexity is
lost |




Decay of past information

ParisTech
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Correlation analysis of
Fluxes:

-similar for the total flux and
that of the past,

-future flux correlation

- only oscillate

around unity (stochastic
conservation).



(naive) ensemble prediction

Reference | Reference relaxation
simulation . .
simulation
a=1.8, C;=0.1,
H=1/3, H,=1/3,A\=256 -..
Average of 20 forecasts
(independent flux

subgenerators):
still rather blurred...

t=ty+5At

t=ty+10At




Fundamental problem: nonlinearity

ou 1
— +u-grad(u) = f — —grad(p) + vAu
875 4 — e, ()

—_— = e — + e
— = U0
reme— = Qre y.
propagator
O — f( l,t) — o = e 4 D _<]' + 2M“.“.._<-|.-.____
o
‘:I = vertex

Endless proliferation of higher ™ —,
and higher order diagrams (Re >>1) .



Quasi-gaussian dead end

(a)
cuu> <ft>
= QL + 28 p'r I
N
(b) '
<G> TN Gr renormalized
A [ BN, [ -
,,,,,,,, — + 4o — propagator
S — QL 4 2 o] -
N
AN
+ 4 ,,,,,,,, —_—] -]
R
DI A main assumption:

@ % the forcing fis (quasi-) ga_ussian
I y---- however, the renomalization of the vertex

Is non trivial and unsolved ! .
=> fundamental importance of



FIF assumes that both the renomalized
propagator P and forc?R are known:

(;ﬁl*QLZZfR

Gr

Fractionnaly Integrated Flux
model (FIF, vector version)

IS a fractionnal
differential
operator

results from a
continuous, vector,
multiplicative cascade
(Lie cascade)

Complex FIF simulation of a

2D cut of

=1

wind and its vorticity (color)
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Fractionnaly Integrated Flux
model (FIF, vector version)

FIF assumes that both the renomalized 3D FIF wind simulation based
on quaternions

propagator ¢, and force,,  are known:
—1

where: fp = &

szl IS a fractionnal
differential
operator
E results from a
continuous, vector,
multiplicative cascade
(Lie cascade)




Conclusions

* Prediction in space-time complex systems 1s still at
~1ts infancy.

e Requires critical examination of concepts that
emerged from the study of systems that are

complex only in time (€.g. characteristic
predictability time),

= °* space-time complex systems :

— Relative space/time symmetry,

— no characteristic times of predictability.

* 1.e. power-law decays of the predictability
PARIS-ES * higher predictability limits ! J

15/08/03 Complexity 2007, Cambridge




