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Predictability

• What can we predict?  
• What are the intrinsic predictability limits?  

• Necessary to clarify what are they 
respectively for systems 
– complex only in time (ODE) 
– complex both in space and time (PDE) 

• How to reach these predictability limits? (*) 

• (*)  how to be “operational” without it?
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Lessons from complexity in time?

– brought a wealth of striking results for (finite) 
nonlinear (ordinary) differential systems: 

€ 

˙ X (t) =
d
dt

X = F(X,  t)

in a d-dimensional embedding space Ed

– or (simpler) iteration maps: 

€ 

X n+1 =G(X n )
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The Butterfly Effect

!4

Lorenz model: x-z projection  of the evolution  100,000 points initially uniformly 
distributed (σ=.027)  in the neighborhood of  (6.27,13.9,19.5) that quickly spreads over 
the strange attractor. 
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Lessons from complexity in time?

– Multiplicative Ergodic Theorem (M.E.T.)	

Lyapunov, 1907; Oseledets, 1968

– with the (finite) Lyapunov exponent: 

€ 

δX( t) ≈ eµ t δX(0)

€ 

µ =< Log+ DXF( ) >
Hints: pair separation is multiplicatively modulated by the 
derivative 	

+ existence of  an ergodic measure that defines <.> averages
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Lyapunov exponent of Lorenz model
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µ(t) = dt
0

t

∫ Log+ D
Xt
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µ ≈ 2.33341
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Lessons from complexity in time?

– Liouville equation (LE) for intermediate times	

(Liouville, 1938) for any well-posed finite d-dimensional 

differential system,  an ergodic measure exists and is 
regular w.r.t. the Lebesque measure dX1 dX2…. dXd 

–  i.e. a continuity equation of the density of the ergodic 
measure in the phase space

€ 

∂
∂t
ρ(X,t) +

i=1

d

∑ ∂
∂Xi

˙ X i(t)ρ(X,t)[ ] = 0
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Butterfly effect and EPS

Scheme of the evolution of the empirical pdf evolution of an Ensemble  
Prediction System (EPS), according to Palmer,1999:  from the phase 
space region occupied by the initial ensemble (a), to (b) linear growth phase,  
to (c) nonlinear growth phase, to (d) loss of predictability (Palmer, 1993)



Is the butterfly effect really true?

A million dollar problem with trillion-dollar 
implications!



Spectral analysis and closures

€ 

ec (x,t) = u2(x,t).u1(x,t)

eΔ (x, t) = 1
2 u2 (x, t) − u1( x, t)( )2

Lorenz (1969) 	

Leith and Kraichnan(1972), 	

Metais and Lesieur (1986)

  

€ 

ℓ c =1/kc ≈ t
3 / 2

  

€ 

ℓ c
2 / 3 = ε

1/ 3
t 3 / 2; ε =10−3m2s−3,η ≈10−3m;

Flux from correlated eC 
to 	

decorrelated energy eΔ

Similar results with turbulence phenomenology:



Turbulence phenomenology

  

€ 

t ≈ ℓ /δu(ℓ)

  

€ 

ε(ℓ) ≈ δu2(ℓ) /τ(ℓ) ≈ δu3(ℓ) /ℓ
Assuming scale invariance of the energy flux (K41):

uncertainties grow up to larger scales	

according to a power-law!

The eddy turn-over time is the characteristic time, if it exists, 	

for structures of scale   

€ 

ℓ
to "turn over" within a velocity shear   

€ 

δu(ℓ) :

It is also the proportional to their time-life (Robinson, 1971) therefore 
the rate of energy transfer to smaller scales is: 

  

€ 

ε(ℓ) ≈ ε

  

€ 

µ(ℓ)∝1/τ (ℓ)∝ε
1/ 3
ℓ−2 / 3 Small scale divergence !

  

€ 

ℓ e( t)∝ε
 1/ 2

t3 / 2



How to generalize turbulent 
phenomenology?

• How to include: 	

– intermittency, : 	


• strongly non gaussian statistics, 	


– scaling anisotropies: 	

• Time vs. space:	

• Vertical vs. horizontal:	


– atmosphere is neither 3D, nor 
2D, but rather 23/9D ? 	


• Use (anisotropic) time-
space cascades :	

– Outcome: multifractals in 

the framework of GSI

Hierarchy of space-time	

structures



Pedagogy: multiplicative cascades

• Richardson poem:  
Big whorls have little whorls... 
• discrete multiplicative cascade 

processes (Yaglom 1966, Mandelbrot 1974…) 

• from dead/alive alternative (β-
model)  

• to weak/strong infinite hierarchy of 
intensities 

• supported by an infinite hierarchy of 
fractals,  

• i.e. these fields are in general 
MULTIFRACTAL 

• DISCRETE CASCADES are mostly 
for PEDAGOGY ! 

• multiplicative processes are 
not indispensable ! 

• no causality !

CASCADE
  LEVELS
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  .
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x
y

ε

0l

l0 / λ1

2

n

l0 / λ

l0 / λ

multiplication by 4
independent random
(multiplicative)
increments

multiplication by 16
independent random
(multiplicative)
increments

(S & L,  1987)



From discrete to continuous and universal cascades

Generator Γλ: 
(Logλ divergence)

€ 

−(−Δ)β (Γλ) = γλ,  β = Del /2α ',  
1/α +1/α '=1 

Sub-generator γ0,λ white-noise  
(UM: Lévy-noise, index α, β=-1)

€ 

−(−Δ)β ' (ρλ) = ελ
β '= (Del −H) /2Field ρλ

U.M.= stable fixed points  
of a multiplicative CLT 

Hint: multiplicative process=exponential of an additive process, 
but with a small scale singular limit !

€ 

ελ
d"� = "�d��

d�� � d�� =
var(↵)d�

�
; var(↵) =

C1

↵� 1



(t≤t0) (t>t0)

Past  
with uncertainties

The infinitely many  
admissible FUTURE 
trajectories

Forecasts and past memory



Multifractal Predictability

L

L/λ(t)

L/Λ

A and B strongly dependent

A and B strongly independent

!
!
Cascade A	
 Cascade B

Crude idea:  	

relaxation of (common) past structures ==> flux of the past 	

(new) independent structures ==> flux of the future



Multifractal predictability  
 

•Power law divergence between the realizations A and B,     
=> irrelevance of the finite dimensional ‘LE + MET’ scenario !     
•Drastic loss of variability of forecast C with deterministic sub-grid  
modeling (based on the conservation  of the flux) => ‘baby theorem’:  
stochastic sub-grid modeling does much better than deterministic one!

(Schertzer and Lovejoy,Physica A 2004)



Forecasts based on radar data
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Power law decay of the common scale ratio

Power law decay 	

of the scale ratio	

λ(t) on which A and 	

B are strongly 	

dependent



STEPS

STEP is a BOM operational product !
based on a simplification of multifractal 
forecasts

(Seed, 2009)



STEPS

(Seed, 2009)



Small scale variability 

Qradar  (1 km) 
Q0.9 et Q0.1 (125 m)

1000 downscaling realisations: 1km ->  125 m 
 1000 downscaling realisations: 8 km ->  125 m

(Gires, eta l., 2010)

Stochastic ensemble (1000 realisations) of multifractal downscaling



Small scale variability 

(Gires, eta l., 2011)

!

1 – 10
10 – 12
12 – 14
14 – 16
16 – 18
18 – 20
20 – 23
23 – 28
28 – 36
36 – 43
43 – 51
51 – 62
62 – 84
84 – 108
108 – 216
> 216

North

1 km

(b)

 Estimates of peakflow 
quantile increases due to 
small scale variability of 
the rainfall of in a sewer 
system in Paris region

Stochastic ensemble (1000 realisations) of multifractal downscaling



Multifractal FIF simulation (S et al., 2013) of a 2D+1 cut of wind 
and its vorticity (color).  This stochastic model has only a few 
parameters that are physically meaningful.

Art piece ‘Windswept’ (Ch. Sowers, 2012): 612 freely 
rotating wind direction indicators to help a large public 
to understand the complexity of environment near the 
Earth surface

Surface layer complexity! 

!24

Both movies illustrate the challenge of the near surface  wind that plays a key role in the 
heterogeneity of the precipitations... and wind energy!



Conclusions
• Multifractal/cascade processes 	


– not only help to clarify the predictability of space-time 
complex systems, 	


– but yield concrete methods to dynamically forecast within 
this predictability limit by:	

• exploiting the past memory	

• yielding admissible futures	


– already generated an operational product (STEPS)	

• still interesting/complex problems, e.g.: 	


• how to accurately estimate the past generator 
from real data  (deconvolution)	

– therefore from ‘imperfect’ data	


• what about wind field (added value)?	

• Fokker-Planck equation for MF processes?	


• Funding: UE Alban Program, UE FLOODSITE,  CNRS/PNRH, RainGain



Forecasts and past memory

���26

Illustration of  
a continuous  
cascade simulation 
from the 
subgenerator (white 
noise) 
to the field 
(fractionnaly 
Integrated Flux)

How to compute  
a possible FUTURE 
outcome

How to use  
the memory of  
the PAST

Illustration of  
the ‘deconvolution’  
of past data to extract 
the past generator from 
the observed field

FORECAST: Combine the two generators to get the total flux and the total field
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Realisations A,B,C (2522)  
have common past  
(t=0, t0=32) for t= 0, 64 : 
!
 A B are 2 stochastic forecasts: 
similar complexity  
!
C is a deterministic forecast : 
relaxation of the past structures, 
the small scale complexity is 
lost !

15/08/03

Examples of forecasts



Decay of past information

y = 9.9x-1.0

R2 = 0.8

y = 7.5x-0.7

R2 = 1.0

0.1

1

10

1 10 100
t-t0

C
(q

)

Total Flux Past Flux Future Flux

Correlation analysis of  
Fluxes:  
-similar for the total flux and 
that of  the past,  
-future flux correlation 
- only oscillate 
around unity (stochastic 
conservation).



(naive) ensemble prediction
Reference	

simulation

α = 1.8,  C1 = 0.1, 	

H = 1/3,   Ht = 1/3, λ= 256

Average of 20 forecasts 	

(independent flux 
subgenerators): 	

still rather blurred…

t=t0 

  

t=t0+Δt  

  

t=t0+2Δt 

  

t=t0+3Δt 

  

t=t0+5Δt 

  

t=t0+10Δt 

  
 

Reference	

simulation

relaxation



Fundamental problem: nonlinearity

!30

= u(x,t)

= f (x,t)

= vertex

= bare 
propagator

Endless proliferation of  higher  
and higher order diagrams (Re >>1)

@u

@t
+ u · grad(u) = f � 1

⇢
grad(p) + ⌫�u



Quasi-gaussian dead end

!31

<uu> <ff>

<G>

P P
R

main assumption:  
the forcing f is (quasi-) gaussian 
however, the renomalization of the vertex 
is non trivial and unsolved ! 
=> fundamental importance of 
intermittency

GR renormalized 
propagator



G�1
R ⇤ u = fR

fR = "a

G�1
R

"

Fractionnaly Integrated Flux   
model (FIF, vector version)

!32

FIF assumes that both the renomalized 
propagator         and force       are known:fRGR

where:

results from a 
continuous, vector, 
multiplicative cascade 
(Lie cascade)

is a fractionnal 
differential 
operator

Complex FIF simulation  of a 
2D cut of  
wind and its vorticity (color) 



G�1
R ⇤ u = fR

fR = "a

G�1
R

"

Fractionnaly Integrated Flux   
model (FIF, vector version)

!33

FIF assumes that both the renomalized 
propagator         and force       are known:fRGR

where:

results from a 
continuous, vector, 
multiplicative cascade 
(Lie cascade)

is a fractionnal 
differential 
operator

3D FIF wind simulation  based 
on quaternions
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Conclusions

• Prediction in space-time complex systems is still at 
its infancy.	


• Requires critical examination of concepts that 
emerged from the study of systems that are 
complex only in time (e.g. characteristic 
predictability time),	


• space-time complex systems :  	

– Relative space/time symmetry,	

– no characteristic times of predictability. 	


• i.e. power-law decays of the predictability	

• higher predictability limits !
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