

Fine-scale rainfall nowcasting – Short Term Ensemble Prediction System

31/03/14

Clive Pierce, Alan Seed, Neill Bowler, Andrew Bennett

STEPS – background

WWRP FDP – Sydney 2000

Bowler, Pierce & Seed, 2006. STEPS: A probabilistic precipitation forecasting scheme which merges an extrapolation nowcast with downscaled NWP. *Q. J. R. Meteorol. Soc.*, 132, 2127–2155.

Seed, Pierce & Norman, 2013. Formulation and evaluation of a scale decomposition-based stochastic precipitation nowcast scheme, Water Resources Research, 49, 6624–6641, doi:10.1002/wrcr.20536

STEPS – capabilities & applications

 Precipitation nowcasting **Ensemble generation** Generation of seamless composite precipitation forecasts Statistical downscaling Design storm modelling

Met Office

- Space-time characteristics
 - Fractal & dynamic scaling properties
 - Intermittency in space and time
 - Non-Gaussian distribution
- Nowcasting
 - Radar-based surface rain rate estimation
 - Reducing and characterising observation & extrapolation errors
 - Exploiting the capabilities of hires NWP
- Hydrological impact

Propagation of errors through hydrological forecast and impact models

That feed on their velocity,

- And little whorls have lesser whorls
- And so on to viscosity
- L. F. Richardson

150 100 50 2002/07/ 2002/07/ 2002/07/ 2002/07/ 2002/07/ 2002/07/ 2002/07/ 2002/07/ 2002/07/ 2002/ 2002/ 2002/ 2002/ Midlands

Met Office Short Term Ensemble Prediction System

- Multiplicative cascade framework
 - >Adaptive, seamless blending
- Parametric and non-parametric noise generators
 - Seamless blending, ensemble generation and statistical downscaling
- Errors modelled
 - ≻ Radar
 - Extrapolation nowcast
 - > NWP

Control

STEPS nowcast ensemble – 0300 UTC 17 November 2010

STEPS scale decomposition

Met Office

Precipitation field

for *i*=1,...,*L*, *j*=1,...,*L*, *L*=2^{*N*-1}

N = number of cascade levels

 $X_k(t) = kth$ field in the cascade represents the variability in the original field with frequencies, ω_{k} in the range

multiplication by

4 independent random (multiplicative)

 $dBR_{i,j}(t) = \sum_{k=0}^{N-1} X_{k,i,j}(t)$

Weights ~ fraction of explained variance

- Optical Flow (Bowler et al., 2004)
- Partition rain analysis into blocks
- Find optimum velocity for each block

$$D_t R = u \frac{\partial R}{\partial x} + v \frac{\partial R}{\partial y} + \frac{\partial R}{\partial t} = 0$$

Apply smoothness constraint

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{and} \quad \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

Smooth velocity field

Temporal updating of extrapolation and noise cascades

Extrapolation cascade

>AR-2 model updates each level of the cascade

≻re-normalised every time step

$$Y_{k,i,j}^{e}(t) = \phi_{k,1}(t)Y_{k,i,j}^{e}(t - \Delta t) + \phi_{k,2}(t)Y_{k,i,j}^{e}(t - 2\Delta t)$$

- Noise cascade
 - Spatial PSD evolves from radar to NWP
 - AR-2 model updates each level of the cascade

$$Y_{k,i,j}^{n}(t) = \phi_{k,1}(t)Y_{k,i,j}^{n}(t - \Delta t) + \phi_{k,2}(t)Y_{k,i,j}^{n}(t - 2\Delta t) + \phi_{k,0}(t)\varepsilon_{k,i,j}(t)$$

 $\varepsilon_{k,i,j}$ = time independent noise

Non-parametric model

FFT-based filter applied to field of white field using radar or NWP forecast field

- > Predominant anisotropy preserved
- > No parameter fitting required
- Parametric model
 - Apply 2 power law filters to field of white noise with slopes estimated from radar or NWP
 - Assumes change in slope of the power spectrum at 40 km scale
 - Generates isotropic noise

Parametric noise generation

Parametric noise generation

		$\mathcal{P}(\omega) \propto \omega^{-\beta_0}$	35 30 25
	Estimate power spectrum with 2 power law relationships and a scale break		- 20
10000	1000	100	0 10 -5
			-10

Parametric noise generation

		$P(\omega) \propto \omega^{-\beta_0}$	35 30 25
	Estimate power spectrum with 2 power law relationships and a scale break		20 15
			$P(\omega) \propto \omega^{-\beta_1}$ 5
10000	1000	100 10	0 -5
			-10

Non-parametric noise generation

Fields with completely different precipitation structure

Met Office

Non-parametric noise generation

Met Office

Time series of temporally correlated noise with properties tending from one field to the other

Radar errors

Error sources (Austin, 1987)

Solutions

Physical biases

- ≻ ground clutter
- beam blockage
- ≻ anaprop
- Measurement biases
 - ➢ poor calibration
 - inappropriate Z-R, VPR

Random sampling errors

temporal & spatial samplingrandom variability in VPR and Z-R

Clutter indicators, radar horizon maps etc.

Radar-gauge adjustment

Derive error distributions and use to generate perturbation fields for ensemble generation

AR-2 models

Multiplicative

perturbations

Radar errors

Spatially interpolated mean and variance of radar-gauge errors derived for Met Office radar network following Germann et al., 2009

Extrapolation nowcast errors

Advection velocity error

> Optical flow diagnosed velocity used to advect radar analysis

Velocities smoothed & bias corrected

Perturbation applied – homogeneous in space, uncorrelated with nowcast velocity ,variance a function of forecast lead time,

$$v_{noisy}(t+t_l) = v_{smooth}(t) \left[1 - \frac{t_l}{60} f(|vsmooth|) \right] + v_{perturbation}(t+t_l)$$
$$v_{perturbation}(t+t_l) = f(t_l) v_{perturbation}(t)$$

Lagrangian evolution error

 $Y_{k}^{nowcast, p} = w_{k}^{extrap} Y_{k}^{extrap} + w_{k}^{nwp} Y_{k}^{nwp, p} + w_{k}^{noise} Y_{k}^{noise, p}$ © Crown copyright Met Office

Met Office

On average convective scale content in NWP forecasts unskilful

Extrapolation nowcast skill declines rapidly at the convective scales

STEPS behaviour

Key

STEPS behaviour

weight

Key

STEPS behaviour

Key

STEPS behaviour

Met Office Verification against rain gauges

Met Office

Verification against rain gauges

 STEPS spreadskill relationship measured against rain gauge – June 2011

extrapolation nowcast and UK4 control forecast. Average statistics compiled for June 2011 using MO rain gauges . 1.2 1 Ensemble mean bias RMS error, spread & bias / mm/h 0.8 Control bias Spread about ensemble 0.6 mean Spread about control 0.4 RMS error ensemble 0.2 mean RMS error control 0 -0.2 Lead time / hours

Bias, RMS error and spread as a function of lead time for an 18 member ensemble of STEPS nowcasts of 1 h rain accumulation incorporating an

Weaknesses of STEPS formulation

Met Office

- Form of modelled distribution
 - dBR need to apply a threshold to treat dry areas
 - Not Gaussian
- Multiplicative cascade
 - > Assumed independence between levels
 - Variance concentrated where rain-no-rain perimeter complex – subtle dependence on large scales
- Noise generation
 - Homogenous spatial correlations imposed on noise using FFT or power law filters
 - Excessive variance injected into the interiors of large areas of precipitation

Operational flood forecasting with STEPS ensembles

- Rainfall ensemble
 - STEPS 2 km, 24 member ensembles
- River flow/surface run-off ensemble
 - Grid-to-Grid (G2G) conceptual-physical, distributed hydrological model (Bell et al., 2009)
 - > 1 km gridded run-off, kinematic routing, surface/sub-surface flow

 General improvement in event/non-event discrimination using ensemble compared to single forecast scenario

Source: CEH, Wallingford

Threshold: QMED/2 river flow threshold during the 24 hour forecast horizon

Thank you for listening