

UK radar data processing

Jacqueline Sugier, Radar R&D, UK Met Office RAINGAIN Project Meeting, 21-22 October 2013, Paris

UK radar network is comprised of 15 radars:

- Doppler radars
- 4 Doppler radars with dual polarisation capability (yellow dots).

All UK radars are capable of:

- Detecting and monitoring precipitation up to 255km from the radar,
- Collecting data at up to 75m x 1° resolution,

Rainfall rate products

Problem: A major limitation to assimilating radar products into NWP and hydrological models is the presence of non-precipitation echoes in the data.

Spurious echo Identification.

Clutter Reflectivity indicator Identify noise Identify clutter Identify occlusions Probability Identify remaining of spurious echoes precipitation Flagged Reflectivity

CPA: Clutter phase alignment

40

Identifying Spurious Echoes

Met Office

- Use Laplace filter for speckle
- Use MSG satellite data to decide if radar echoes are likely to be a return from precipitation
- Scheme is cautious: needs to strike right balance between anaprop removal/ rain deletion
- Don't work well when: in convective showers, fog or low cloud conditions

Spurious echoes identification

Met Office

POD Jan 2012

POD Jan 2013

Improved scheme was introduced last year based on Nicol et al (IAHS Publ 2012). This technique show clear improvement to the data; however some limitations with sea clutter and RLAN interference.

Average dBZ Jan 2013

Going forward: use dual polarisation parameters to improve this scheme further.

"Fuzzy Logic Algorithm for the Separation of Precipitating from Nonprecipitating Echoes Using Polarimetric Radar Observations" by Jonathan J. Gourley,* Pierre Tabary, and Jacques Parent du Chatelet Météo-France, Direction des Systèmes d'Observation, Trappes, France

"Weather Radar Ground Clutter. Part II: Real-Time Identification and Filtering ", by J. C. Hubbert, M. Dixon, and S. M. Ellis, National Center for Atmospheric Research, * Boulder, Colorado

" Classification of ground clutter and anomalous propagation using dual-polarization weather radar " by Rico-Ramirez, MA; Cluckie, ID. In: IEEE Transactions on Geoscience and Remote Sensing, Vol. 46 (7), 07.2008, p. 1892 - 1904.

New development with dual polarisation Identifying Spurious Echoes

Met Office By Nawal Husnoo

Built initial database of radar echoes

- Viewed 191 individual radar images
- Drew 1600 little boxes

Breakdown:

Biological	20 boxes	5 files	15,049 pixels
Noise	71 boxes	28 files	652,674 pixels
Precipitation	311 boxes	42 files	250,283 pixels
France	103 boxes	18 files	31,063 pixels
RF interference	348 boxes	48 files	22,859 pixels
Sea clutter	71 boxes	20 files	44,272 pixels
Ship	280 boxes	24 files	3,682 pixels
Ground Clutter	396 boxes	34 files	95,693 pixels

Raw Reflectivity (dBZ)

Rainfall estimate using DP

Rainfall estimate without DP

Attenuation correction

Example of Differential Phase, ϕ_{DP} Chenies – 17 Mar 2013

Reflectivity, dBZ

As rain becomes heavier raindrop become oblate. The horizontally polarised wave will be more affected by more water than the vertically polarized wave.

$\phi_{\mathsf{DP}} = \phi_{\mathsf{H}} - \phi_{\mathsf{V}}$

Differential Phase Shift, degree

 ϕ_{DP} Indicates the relative delay between the Horizontal and Vertical wave \rightarrow Increase in differential phase related to attenuation of the radar signal.

Questions & answers