

École des Ponts ParisTech

WP1 (Validation) and WP2 update

RainGain Project Meeting, Antwerpen, 31 March - 2 April 2014

Auguste Gires Abdellah Ichiba Ioulia Tchiguirinskaia Daniel Schertzer

Multifractal comparison of two operational radar products

Multifractal comparison of two operational radar rainfall products

The two product used the same C band radar data but different QPE algorithm

Rainfall events:

14 July 201015 August 201015 December 2011

<u>Data</u>

- Météo France radar data
- CALAMAR adjusted field
- CALAMAR non-adjusted field

Methodology (based on Multifractal framework)

- Power spectra
- scaling function K(q)
- Multifractal parameters (Alpha and C1) In both Spatial and Temporal analysis

Multifractal comparison of two operational radar rainfall products

$E(f)=f^{-\beta}$

- Clear scaling behaviour
- β values greater than the dimension ==> non-conservative field
- Greater values of β for MF field ==> more correlated field
- sign change of the nonconservativeness parameter H

Multifractal comparison of two operational radar rainfall products

a

- The curvature of the K(q) functions reflects the multifractal nature of the studied field
- K(q) for the CALAMAR fields is almost linear and $\alpha=0$ in space ==> fractal behaviour in space while remain multifractal in time
- MF field remains multifractal in both space and time $(1.1 < \alpha < 1.9)$

Multifractal comparison of two operational radar rainfall products

Calamar non adjusted **Calamar adjusted** Météo France

In spatial analysis:

- High % of zeros observed on **CALAMAR** fields related to the static method of ground clutters treatment
- Huge differences between the two products:
- MF field exhibit the greater values of alpha and smaller values of C1.

Improvement of disdrometer rainfall measurements

Implementation of three disdrometers

On the roof of the ENPC building :

OTT Parsivel² (occulted light) (Available since October 2013)

Campbell Scientific PWS100 (scattered light) (Available since March 2013)

With the help of S. Botton team (ENSG)

First comparison of the two disdrometers

Parsivel measures much more small drops and less large ones which have a stronger influence on rain rate (much more data is need to confirm this).

Correction for drop oblatness

Drop oblateness poorly taken into account in the PWS100 software

 \rightarrow Suggestion of a correction (initial tests) :

Insight into the 3+1D structure of the rainfall field

2D Video disdrometer

Rai Gai

> Data from LTE (Alexis Berne)

For each drop :

- Date
- Position (within a 14 cm x 14 cm sampling area)
- Diameter (Equivolumic sphere)
- Oblateness

Velocicty

RainTemporal analysis on 1ms time step series !

24 September 2012 Cumul. Depth ~ 10 mm

INTERREG I

On 5 events:

- Large scale (blue) : $\alpha = 1 - 2$, $C_1 = 0.2 - 0.5$ according to the event

 Small scale (red) : bad scaling, transition zone

- Extremely small scale (green) : $\alpha = 0$ and $C_1 = 0.7-0.8$ (fractal codimension of the rainfall support)

